Е.В. Семененко, канд. техн. наук

(Украина, Днепропетровск, Институт геотехнической механики НАН Украины)

МОДЕЛИРОВАНИЕ РЕЖИМОВ РАБОТЫ КАРЬЕРНОГО ГИДРОТРАНСПОРТНОГО КОМПЛЕКСА С УЧЕТОМ ПАРАМЕТРОВ УСТАНОВЛЕННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

Гидротранспортные комплексы как средство доставки россыпей от мест добычи к месту переработки, а также отвода отходов обогащения получили широкое распространение на горно-обогатительных предприятиях Украины [1-4]. Опыт эксплуатации гидротранспортных комплексов на карьерах показывает, что для повышения эффективности и надежности их работы необходимо учитывать, что головная насосная станция такого гидротранспортного комплекса все время перемещается за фронтом горных работ, при этом периодически увеличивается длина магистрали и меняется необходимая высота подъема гидросмеси.

Очевидно, что эта особенность накладывает некоторые ограничения на выбор и эксплуатацию как насосов, так и электродвигателей для карьерного гидротранспортного комплекса [1,3]. Сначала для обеспечения процесса гидротранспортирования достаточно одного насоса центробежного типа, размещенного на головной насосной станции. С увеличением длины магистрали необходимо уже два последовательно включенных насоса на головной станции [1,3,4]. Затем для обеспечения доставки сырья приходится использовать схему гидротранспортирования с несколькими последовательно подключенными насосами, расположенными на различных насосных станциях. Очевидно, что при установке нового насоса или изменении длины магистрали режим работы электродвигателя каждого насосного агрегата изменяется и без предварительного его моделирования и оценки надежности невозможно ответить на вопрос об эффективности эксплуатации всего гидротранспортного комплекса.

Поскольку для карьерных гидротранспортных комплексов обычно используют насосные агрегаты, состоящие из насосов центробежного типа и асинхронных, короткозамкнутых электродвигателей [3-5], то изменение потребляемой насосом мощности и частоты вращения рабочего колеса приводит к изменению скольжения и потребляемой электродвигателем мощности. Очевидно, что режим работы такой гидротранспортной системы, после изменения концентрации гидросмеси или свойств транспортируемого материала, будет определяться как расходно-напорными характеристиками насосов, так и рабочими характеристиками асинхронных двигателей.

При проектировании карьерных гидротранспортных комплексов мощность электродвигателя выбирается с определенным запасом, величина которого регламентирована [1,2,4,5], но в условиях производства на сегодняшний день не всегда возможно заменить отказавший электродвигатель на такой же, что приводит или к снижению коэффициента запаса, или к завышению мощности электродвигателя по сравнению с проектной. Асинхронные электродвигатели одни из основных источников реактивной мощности в распределительных сетях карьеров [6,7]. Для снижения реактивной мощности иногда устанавливают электродвигатели, мощность у которого меньше рекомендованной при проектировании [4,5,6]. В результате режим работы карьерного гидротранспортного комплекса, рассчитанный без учета рабочих характеристик используемого электродвигателя, может оказаться невозможным по причине перехода электродвигателя в неустойчивую область [3,6]. Это происходит при необоснованном удлинении трубопровода после перемещения головной насосной станции вслед за фронтом горных работ.

Таким образом, для карьерных гидротранспортных комплексов рассматриваемого вида существует проблема определения необходимой мощности и частоты вращения используемых электродвигателей с учетом резкого изменения свойств и концентрации транспортируемого материала, а также увеличения длины трубопровода.

Решение рассматриваемой проблемы позволит повысить надежность и стабильность работы карьерных гидротранспортных комплексов, снизить убытки, вызванные их аварийными остановками, и тем самым повысить эффективность функционирования технологии в целом.

Электродвигатели для насосных агрегатов гидротранспортного комплекса обычно выбираются по показателям назначения насоса, после расчета параметров установки в рабочей точке [1,2,4]. Этот подход предполагает выбирать электродвигатель по известной мощности на валу, которая рассчитывается с некоторым запасом. При этом изменения мощности и режима работы установки в результате колебаний концентрации и свойств транспортируемого материала рассчитываются без учета рабочих характеристик электродвигателя. Этот метод приемлем, если мощность электродвигателя выбрана с достаточным запасом, что неоправданно завышает эксплуатационные затраты.

Известны работы, в которых исследуется зависимость между допустимыми величинами скольжения асинхронного электродвигателя и гидродинамическими параметрами насоса и магистрали [3,4,5]. Однако в предлагаемых методиках не учитываются изменения параметров и режима работы насоса при изменении частоты вращения рабочего колеса, что имеет место при изменении скольжения.

В некоторых работах зависимость подачи насоса гидротранспортной установки от частоты вращения предлагается описывать степенной функцией [4,5], но при этом нарушаются законы подобия, поскольку авторами не используется парабола подобных режимов [5].

Для достоверного обоснования рабочих характеристик асинхронных электродвигателей карьерного гидротранспортного комплекса рассматриваемого вида требуется разработка математической модели этого объекта, описывающая параметры и режимы работы с учетом рабочих характеристик электродвигателей, а подачу насосов комплекса при изменении частоты вращения рабочего колеса следует определять согласно параболе подобных режимов. Создание такой модели и является целью данной работы. Для условий карьерного гидротранспортного комплекса расходнонапорные характеристики трубопровода и насоса могут быть представлены функциями вида [1-5]:

$$h(Q) = \alpha Q^2 + \frac{\beta}{Q} + \gamma; \qquad (1)$$

$$H_i(Q) = c_i - b_i Q - a Q_i^2, \qquad (2)$$

$$\alpha = \frac{8\left(1 + 2Ar_1S_1 - Ar_1S_1^2\right)}{\pi^2 g\left(1 + Ar_1S_1\right)} \sum_n \left(0.11 \frac{L_n}{D_n^5} \left(\frac{\Delta_n}{D_n}\right)^{0,25} + \frac{\xi_n^o + \operatorname{int}\left(\frac{L_n}{L_n^D}\right) \xi_n^*}{D_n^4}\right);$$

$$Ar_i = \frac{\rho_i - \rho_o}{\rho_o};$$

$$\beta = \frac{\pi A r_2 \left(A r_2 - A r_1 S_1\right) S_2 (1 - S_2)^x}{12.5 (1 + A r_1 S_1)} \left(\frac{17.68 d_2 + 0.005 (t - 26)}{26 \sqrt{d_2}}\right) \sum_n D_n^{2.5} L_n \cos \theta_n ;$$

$$x = 5 \left[1.28 - 0.21 g \left(d_2 (0.68 d_2 + 0.005 t - 0.13) \left(1 + 0.0033 t + 0.00022 t^2\right)\right)\right];$$

$$c = \sum_i \chi_i c_i \psi_i ; \qquad b = \sum_i \chi_i b_i \psi_i ; \qquad a = \sum_i \chi_i a_i \psi_i ; \qquad \psi_i = \left(\frac{n_i}{n_i'}\right)^2 \left(\frac{D_i}{D_i'}\right)^{2,46};$$

$$\gamma = \frac{0.3 \left(A r_3 - A r_1 S_1\right) S_3}{(1 + A r_1 S_1)} f \sum_n L_n \cos \theta_n \pm Z (1 + A r_1 S_1); \qquad S_i = R_i \varphi_*;$$

$$\chi_i = 1 - \frac{0.56S}{1 + \sum_l A r_l S_l} \left(\sum_{k=1}^m (A r_k - A r_1 S_1) \sum_{j=1}^n \sigma_k q_j \left[A r_{jk} + 3.731 g \left(1737 \frac{d_{ikcp}}{D_a^{(i)}}\right)\right]\right),$$

где h(Q) - расходно-напорная характеристика трубопровода установки; Q - подача гидротранспортного комплекса; α,β,γ - коэффициенты, учитывающие влияние свойств транспортируемых частиц и параметров трубопровода [2,4,5]; $H_i(Q)$ - расходно-напорная характеристика *i*-го насоса; a_i, b_i, c_i - коэффициенты аппроксимации расходно-напорной характеристики *i*-го насоса [2,4,5]; χ - коэффициент, учитывающий влияние концентрации гидросмеси и свойств транспортируемого материала; d_{icp} – диаметр частиц с плотностью ρ_{sk} ; σ_k – объемная доля в россыпях материала плотностью ρ_{sk} ; ρ - плотность гидросмеси; ρ_0 плотность несущей жидкости; $\phi_{\rm H}$ – объемная доля твердого в гидросмеси; S_i объемная доля в гидросмеси частиц *i*-го типа (1 – тонкие, 2 – мелкие, 3 - кусковые); R_i – объемная доля частиц *i*-го типа в транспортируемом материале (1 – тонкие, 2 – мелкие, 3 - кусковые); q_j – объемная доля *j*-го класса крупности во

фракции с плотностью ρ_k в %; $D_a^{(i)}$ - диаметр рабочего колеса *i*-го насоса; Ar_i параметр Архимеда материала *i*-й фракции; *g* - ускорение свободного падения; L_n - длина *n*-го участка магистрали; D_n - диаметр трубопровода *n*-го участка магистрали; ξ_n^o - коэффициент местных гидравлических сопротивлений на *n*-м участке; ξ_n^* - коэффициент местных гидравлических сопротивлений, обусловленных сварными швами трубопровода на *n*-м участке; L_n^D - длина секций труб, из которых смонтирован трубопровод на n- м участке магистрали; d_2 - средневзвешенный диаметр мелких частиц; θ_n - угол наклона *n*-го участка магистрали к горизонту; t - температура гидросмеси; x - коэффициент, учитывающий влияние температуры гидросмеси на скорость стесненного падения мелких частиц; f - обобщенный коэффициент трения частиц кусковой фракции о стенку трубопровода; Z - разница геодезических отметок конца и начала магистрали; D_i - диаметр рабочего колеса, установленного на i-м насосе; D'_i - паспортное значение диаметра рабочего колеса i – го насоса; n_i - частота вращения рабочего колеса i – го насоса; n'_i - паспортное значение частоты вращения рабочего колеса, для которого приведена расходно-напорная характеристика *i*-го насоса; Δ_n - шероховатость внутренней поверхности на n-м участке трубопровода.

При изменении концентрации, гранулометрического или фракционного состава транспортируемого материала в поступающей гидросмеси изменяются величины $\alpha, \beta, \gamma, a_i, b_i, c_i$ и подачу гидротранспортного комплекса в старом и новом режимах определяют из соответствующих уравнений:

$$(\alpha + a)Q^{3} + bQ^{2} + (\gamma - c)Q + \beta = 0;$$
(3)

$$(\alpha_{1} + a_{1})Q_{1}^{3} + b_{1}Q_{1}^{2} + (\gamma_{1} - c_{1})Q_{1} + \beta_{1} = 0;$$

$$(4)$$

$$(b_{1}^{2} + 4c \cdot [a + \alpha_{1}])Q_{1}^{6} + 4c \cdot \gamma_{1}Q_{1}^{4} + 4c \cdot \beta_{1}Q_{1}^{3} - b$$

$$\begin{aligned} Q_i^* &= 0.5 \frac{\sqrt{|b_i^*| + 4c_i |a_i + \alpha_1|} Q_1^* + 4c_i \gamma_1 Q_1^* + 4c_i \beta_1 Q_1^* - b_i}{(a_i + \alpha_1) Q_1^3 + \gamma_1 Q_1 + \beta_1};\\ c_1 &= \sum_i Q_i^* \Omega_i \chi_i c_i \psi_i; \qquad b_1 = \sum_i Q_i^* \Omega_i \chi_i b_i \psi_i; \qquad a_i = \sum_i Q_i^* \Omega_i \chi_i a_i \psi_i;\\ \Omega_i &= \frac{1 + v\lambda s_{kp}^2 - \sqrt{(\lambda^2 s_{kp}^2 - 4)v^2 - 2s_{kp}^2 (\lambda - 2)v + 1}}{1 + v_* \lambda s_{kp}^2 - \sqrt{(\lambda^2 s_{kp}^2 - 4)v_*^2 - 2s_{kp}^2 (\lambda - 2)v_* + 1}} \frac{1 + v_*}{1 + v}; \ \lambda = \frac{2r_1}{C_1 r_2'};\\ C_1 &= 1 + \frac{x_1}{x_{12}};\\ v_* &= \frac{\rho_g Q (c - bQ - aQ^2)}{\omega_o s_{kp} (2 + \lambda s_{kp}) M_{\max} \eta}; \qquad v_* = \frac{\rho_1 g Q_1 (c - bQ_1 - aQ_1^2)}{\omega_o s_{kp} (2 + \lambda s_{kp}) M_{\max} \eta};\\ M_{max} &= \frac{pm_1 U_1^2}{2\omega_0 C_1 (r_1 + \sqrt{r_1^2 + (x_1 + C_1 x_2')^2})}; \ s_{kp} = \frac{C_1 r_2'}{\sqrt{r_1^2 + (x_1 + C_1 x_2')^2}}, \end{aligned}$$

где Q - подача в исходном режиме (до изменения параметров транспортируемого материала); α, β, γ - коэффициенты расходно-напорной характеристики трубопровода в исходном режиме; $\alpha_1, \beta_1, \gamma_1$ - коэффициенты расходно-напорной характеристики трубопровода в новом режиме; Q_1 - подача в новом режиме (после изменения параметров транспортируемого материала); s_{kp} - критическое значение скольжения электродвигателя; x_1 - индуктивное сопротивление ротора, приведенное к статору; x_{12} - главное индуктивное сопротивление взаимоиндукции обмоток статора; r_1 - реактивное сопротивление статора; r_2' - реактивное сопротивление сопротивление ротора, приведенное к статору; p - число полюсов статора; U_1 - напряжение на зажимах статора; ρ, ρ_1 - старое и новое значение плотности гидросмеси; g - ускорение свободного падения; η, η_1 - КПД насоса при старом и новом значении подачи; Q_i^* - значение подачи, по которому пересчитывается характеристика насоса; Ω - параметр, учитывающий характеристику установленного на *i*-м насосном агрегате электродвигателя.

Значение подачи Q_i^* в соответствии с требованиями подобия режимов работы насоса при изменении частоты вращения рабочего колеса, находится как точка пересечения параболы подобных режимов насоса с расходно-напорной характеристикой трубопровода [5], а параметр Ω_i рассчитывается с использованием формулы Клосса [6].

Уравнение (4) существенно нелинейно относительно Q_1 и его решение может быть получено только численными методами, например, методом деления отрезка пополам. Полученное значение подачи насоса следует сравнить с критическим значением для новых параметров материала и концентрации гидросмеси, и если оно больше критического, то необходимо оценить требуемую для его реализации мощность.

Величина критической скорости для карьерного гидротранспортного комплекса вычисляется как [2,5]

$$Q_{kp} = \frac{\pi \wp}{4} \sqrt{g} D_*^{2.5} \cos \alpha_*; \qquad (5)$$

$$\wp = c_2 \sqrt[3]{\frac{Ar_2 (Ar_2 - Ar_1 S_1) S_2 (1 - S_2)^x}{(1 + Ar_1 S_1)} \left(\frac{17.68d_2 + 0.005(t - 26)}{26\sqrt{gd_2}}\right)}{+ 0.24c_1 \sqrt[4]{\frac{Ar_1^3 (1 - S_1) S_1 gd_1}{(1 + Ar_1 S_1)}} \sqrt{1 + 0.0033t + 0.00022t^2} + c_3 \sqrt{\frac{(Ar_3 - Ar_1 S_1) S_3}{(1 + Ar_1 S_1)}} f,$$

где \wp - коэффициент, учитывающий влияние свойств и концентрации транспортируемого материала; D_* , соз α_* - диаметр и угол наклона участка магистрали, для которого выполняется условие $\max \{\sqrt{D_n} \cos \alpha_n\}$.

По известному значению подачи можно рассчитать мощность, потребляемую *i*-м насосом гидротранспортного комплекса, а новая частота вращения рабочего колеса

$$n_{1}^{i} = \frac{2Q_{1}\left[(a_{i} + \alpha_{1})Q_{1}^{3} + \gamma_{1}Q_{1} + \beta_{1}\right]}{\sqrt{\left(b_{i}^{2} + 4c_{i}[a_{i} + \alpha_{1}]\right)Q_{1}^{6} + 4c_{i}\gamma_{1}Q_{1}^{4} + 4c_{i}\beta_{1}Q_{1}^{3} - b_{i}}}n_{i},$$
(6)

где n_i, n_1^i - частота вращения рабочего колеса, соответственно, при старом и новом режимах работы *i*-го насоса.

Зная частоту вращения ротора асинхронного электродвигателя каждого насосного агрегата, легко определить его скольжение [6]. Сравнивая величину скольжения с критическим и значение расчетной мощности с мощностью установленного электродвигателя, можно сделать заключение относительно о реализации нового режима для рассматриваемого карьерного гидротранспортного комплекса.

На основании приведенной математической модели карьерного гидротранспортного комплекса, формул (1)-(6) возможен расчет параметров и режимов работы как насосов, так и электродвигателей всех насосных агрегатов при изменении параметров и концентрации транспортируемого материала с учетом рабочих характеристик установленных электродвигателей. Разработанная модель позволяет прогнозировать режимы работы карьерного гидротранспортного комплекса, а также оценивать их надежность, при удлинении трубопровода после перемещения головной насосной станции вслед за фронтом горных работ, при замене одного из электродвигателей на менее мощный.

Список литературы

1. Семененко Е.В., Блюсс Б.А. Обеспечение рационального режима работы карьерного гидротранспортного комплекса // Сб. науч. тр. НГУ. – Днепропетровск, 2003. – №17, т.1. – С. 228 – 233.

2. Дмитриев Г.П., Махарадзе Л.И., Гочиташвили Т.Ш. Напорные гидротранспортные системы: Справ. пособие. – М.: Недра, 1991. – 304 с.

3. Семененко Е.В. Выбор диапазона регулирования насосного агрегата с учетом параметров электродвигателя // Науковий вісник Національнї гірничої академії України. – 2001. - №5. - С. 101 - 103.

4. Тимошенко Г.М. Научные основы проектирования и эксплуатации насосных установок в переходных режимах. - К: Вища шк., 1986. - 127 с.

5. Совершенствование режимов работы гидротранспортных установок технологий углеобогащения / Е.Л. Звягильский, Б.А. Блюсс, Е.И. Назимко, Е.В. Семененко. – Севастополь: Издво «Вебер», 2002. – 247 с.

6. Півняк Г.Г., Довгань В.П., Шкрабець Ф.П. Електричні машини. – Дніпропетровськ: НГУ, 2003. – 327 с.

7. Сокил А.М., Скосырев В.Г., Шкрабец Ф.П. Проблемы энергосбережения и надежности в технологиях добычи и переработки россыпей. – Днепропетровск: Полиграфист, 2000. – 195 с.