М.М.Белый, канд. техн. наук

(Украина, Днепропетровск, Национальный горный университет)

В.В.Коренский, канд техн. наук, А.С.Мыреев

(Россия, Мирный, политехнический институт)

ОПРЕДЕЛЕНИЕ МЕСТА ПОВРЕЖДЕНИЯ ИЗОЛЯЦИИ В СИЛОВЫХ СЕТЯХ

Эффективность эксплуатации систем электроснабжения зависит от их бесперебойной работы. Значительные временные потери связаны с простоями силовых сетей, вызванными определением места повреждения (ОМП) изоляции.

Точность ОМП изоляции различными методами и устройствами зависит от многих факторов. Совершенствование устройств, использующих старые методы ОМП, не приводит к значительному снижению погрешности и времени поиска повреждения.

Ряд устройств, ОМП изоляции, черпает информацию о координате повреждения по изменению входных параметров сети. Основным мешающим фактором в этом случае становится неизвестное сопротивление утечки R_y в месте повреждения, которое добавляется к входным сопротивлениям $R_{\rm BX}$ или $Z_{\rm BX}$ на постоянном или переменном токе соответственно. Использование дожигания изоляции до значения $R_y=0$ экономически не выгодно, а в случае наличия пожаро - или взрывоопасной среды просто неприемлемо.

Метод ОМП по изменению входных параметров силовых сетей на оперативной частоте был предложен коллективом авторов еще в 1980 году [1] и реализован в устройствах, описанных в работах [2, 3].

Общеизвестно, что входное сопротивление \underline{Z}_{BX} линии с распределенными параметрами, к которым можно отнести силовые сети, является функцией многих переменных: первичных R_0 , L_0 , G_0 , C_0 и вторичных \underline{Z}_C , γ параметров, длины линии (l) и координаты повреждения У, величины сопротивления утечки R_y [4], т.е.

$$\underline{Z}_{BX} = Z_{BX} e^{j\varphi_{BX}} = \underline{Z}_{B} \frac{\underline{Z}_{2} ch \gamma y + \underline{Z}_{B} sh \gamma y}{\underline{Z}_{2} sh \gamma y + \underline{Z}_{B} ch \gamma y}, \tag{1}$$

где \underline{Z}_B - волновое сопротивление; γ - коэффициент распространения; \underline{Z}_2 - сопротивление нагрузки.

Для исключения влияния участка силовой сети за местом повреждения х линия нагружена на сопротивление \underline{Z}_B . В результате сопротивление нагрузки участка линии длиной у определится как

$$\underline{Z}_2 = \frac{R_y (R_B + jX_B)}{R_y + R_B + jX_B}.$$
 (2)

Совместное решение уравнений (1) и (2) с учетом компенсации параметров линии до возникновения повреждения позволяет определить аргумент приращения входного сопротивления после возникновения в ней повреждения:

$$\Delta \varphi_{Z} = \operatorname{arctg} \frac{X_{B} \left[(R_{B} - R_{2})^{2} (\operatorname{sh2}\alpha y - \operatorname{ch2}\alpha y) \right] -}{R_{B} \left[(R_{B} - R_{2})^{2} (\operatorname{sh2}\alpha y - \operatorname{ch2}\alpha y) \right] -} \rightarrow \frac{-D \left[X_{B} \cos(2\beta y - \delta) - R_{B} \sin(2\beta y + \delta) \right]}{-D \left[R_{B} \cos(2\beta y - \delta) + X_{B} \sin(2\beta y + \delta) \right]}.$$
(3)

Коррекция выражения (3) по $\Delta \phi_Y$ дает возможность уменьшить нелинейность зависимостей $\Delta \phi = f(y)$ и соответственно снизить погрешность ОМП (рис. 1).

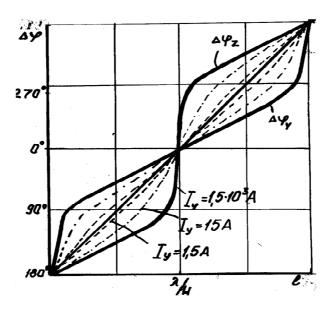


Рис.1. Зависимость $\Delta \phi$ от координаты утечки

Основной недостаток указанного способа ОМП и реализующего его устройства — наличие семейства кривых $\Delta \phi$ в функции величины тока утечки I_y через место повреждения.

Новым в решении ОМП для силовых сетей является использование метода сравнения. Силовая линия представлена как линия с распределенными параметрами, параллельно которой включается модель той же линии, но с сопротивлением изоляции, удовлетворяющим требованиям ПУЭ. Между моделью и контролируемой линией находится индикатор равновесия. Место повреждения изоляции определяется перемещением регулируемого сопротивления R_{κ} вдоль

модели. При совпадении R_{κ} и R_{y} по величине и положению наступает равновесие, что и фиксируется индикатор.

Схема устройства для ОМП изоляции в силовых сетях представлена на рис. 2,а. Она состоит из генератора Γ синусоидального напряжения оперативной частоты, измерительного трехобмоточного трансформатора Тр, двухлучевого осциллографа ЭЛО в качестве индикатора равновесия, модели линии M с перемещающимся сопротивлением R_{κ} и линии M с возникшим в ней повреждением изоляции R_{ν} .

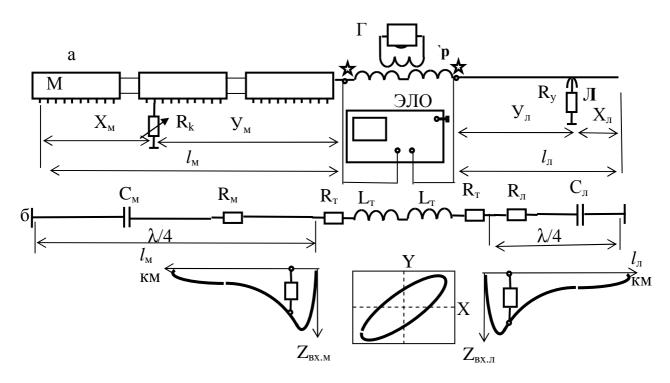


Рис. 2. Структура модели устройства ОМП изоляции (а) и характер входных сопротивлений линии и модели (б)

Реализация устройства ОМП в силовой сети и определение его параметров производится в такой последовательности:

- 1. Находятся параметры различных силовых сетей и создаются их физические или машинные (компьютерные) модели М.
- 2. Выбирается частота генератора оперативного напряжения Γ из условия, чтобы длина линии l была равна четверти длины волны λ , ($l = \lambda/4$). Тогда частота Γ $f = \upsilon/4l$. Это позволяет однозначно определять характер входных сопротивлений линии и модели в различных режимах (рис.2,б).

Возникшее повреждение изоляции изменяет величину $\underline{Z}_{BX,J}$ линии и уравновешивается $\underline{Z}_{BX,M}$ модели за счет перемещения сопротивления R_K вдоль ее длины.

Индикатор равновесия в предложенном устройстве позволяет контролировать отношения как амплитуд, так и фаз входных величин.

Проанализируем работу линии при различных значениях $R_{\rm y}$ и ее координаты у.

Режим короткого замыкания линии четвертьволновой длины ($R_y=0$) во всем диапазоне координаты повреждения у характеризует сопротивление как активно-индуктивное $\underline{Z}_{BX.K3}=jZ_Cth\gamma y$.

Перемещение сопротивления R_K в модели приводит к изменению сопротивления $Z_{BX,M}$ по отношению к $Z_{BX,J}$. Сопротивление R_K включается параллельно сопротивлению участка модели линии длиной X_M за местом повреждения работающей в режиме холостого хода линии на расстоянии Y_M от ее начала. Моментом отсчета координаты повреждения является равенство входных сопротивлений линии и модели по модулю ($Z_{BX,J} = Z_{BX,M}$) и аргументу ($\phi_{BX,J} = \phi_{BX,M}$), что возможно при равенстве расстояний ($Y_M = Y_J$) и сопротивлений калиброванного и утечки ($R_K = R_y$). Причем, точность определения координаты повреждения изоляции сети тем выше, чем больший масштаб модели сети.

Работоспособность образца устройства ОМП была проверена на физической модели силовой сети в лабораторных условиях. Результаты проверки показали возможность определения места повреждения изоляции с точностью до 1%, а также контроля сопротивления изоляции в месте повреждения в пределах от долей Ома до десятков кОм.

Список литературы

- 1. А.с. №759993. Способ определения расстояния до места повреждения в силовых сетях.
- 2. А.с. №646275. Устройство для определения места повреждения в силовых сетях.
- 3. Коренский В.В., Белый М.М. Устройство измерения параметров силовых сетей и определения места повреждения (ОМП) изоляции // Науч.-практ. Конф. "Образование. Общество. Технический прогресс" : Тез. докл. Мирный, 1999. С. 140.
- 4. Коренский В.В. Возможность применения частотного метода определения места повреждения в силовых сетях горных предприятий // Науч.-техн. конф. "Образование и технический прогресс на рубеже XXI века " : Тез. докл. Мирный, 2001. С. 66.