А.А. Шавёлкин, канд. техн. наук (Украина, Донецк, Донецкий национальный технический университет)

ВЫХОДНОЕ НАПРЯЖЕНИЕ И ВХОДНОЙ ТОК МНОГОУРОВНЕВЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ

В настоящее время для высоковольтных электроприводов переменного тока находят широкое применение многоуровневые преобразователи частоты (МПЧ). Топология схемных решений МПЧ разнообразна [1] и постоянно развивается в плане минимизации [2] и улучшения энергетических характеристик. Ужесточаются и требования стандартов к качеству напряжения и тока. Причем с ростом напряжения повышаются и требования. Так, для сетей общего назначения ГОСТ 13109-97 устанавливает коэффициент гармоник напряжения (THD) при напряжениях 0,4 кВ – 8 % (предельный 12 %), при 6 кВ – 5 % (предельный 8 %). Для примера в табл. 1 приведены данные международного стандарта IEEE-519-1992 по рекомендованному гармоническому составу тока, потребляемого из сети.

Таблица 1

Соста	ів гармо	оник входно	го тока	
Номер гармоники <i>k</i>	<i>k</i> < 11	11 < <i>k</i> < 17	17 < <i>k</i> < 23	23 < <i>k</i> < 35
Максимальное значение, %	4	2	1,5	0,6

МПЧ имеют сложную схему и высокую стоимость. Поэтому логично, чтобы их показатели соответствовали стандартам при минимальных фильтрах на входе и выходе. В то же время практически отсутствуют доступные методики для оценки гармонического состава выходного напряжения и входного тока при различных принципах формирования.

Для высоковольтных ключей характерны значительные потери энергии, особенно на переключение, их снижение связано с использованием амплитудного регулирования при исключении или сведению к минимуму ШИМ.

Цель работы. Разработать комплекс методов для оценки гармонического состава выходного напряжения и входного тока МПЧ и оценить возможности приведения их к стандартам. При этом необходимо решить следующие задачи:

- разработать методы анализа гармонического состава напряжения при разных принципах его формирования;
- исследовать возможность улучшения гармонического состава выходного напряжения при использовании квантования по уровню;
- разработать методы гармонического анализа входного тока МПЧ при использовании многофазных схем выпрямления.

Основные результаты работы. При анализе и сопоставлении различных принципов формирования выходного напряжения МПЧ основным критерием

является интегральный показатель – коэффициент гармоник (THD). При формировании выходного напряжения используются разные варианты управления, базирующиеся на использовании ШИМ. Один из них - синусоидальная многоуровневая ШИМ (МШИМ). Выходное напряжение фазы МПЧ u_{ϕ} при МШИМ имеет ступенчатую форму (рис. 1) с отработкой огибающей методом ШИМ по закону $u_{3A\Pi} = Asin\theta$ ($\theta = \omega t$). Амплитуда первой гармоники определяется значением А (относительная амплитуда u_{ϕ} – по отношению к напряжению одного уровня). Представим напряжение u_{Φ} как сумму напряжений u_1 и u_2 (рис. 1). Напряжение u_1 двухполярное и получено методом ШИМ при амплитуде U_{1m} , равной половине напряжения одного уровня (в относительных единицах $U_{lm} = 0,5$). Напряже-

напряжения МПЧ

ние u_2 имеет ступенчатую форму с уровнями *i*-0,5 (где i = 1, 2, ... (n-1), n = floor(A) – количество уровней u_{ϕ}), переход на очередной уровень соответствует углам $q_i = \arcsin(\frac{i}{A})$. При данном разложении u_{ϕ} на составляющие действующее значение u_1 независимо от частоты модуляции и коэффициента заполнения, $U_1 = 0,5$. Достаточно просто определяется и действующее значение u_2 .

Действующее значение u_{Φ}

$$U = \sqrt{\frac{2}{p} \int_{0}^{\frac{p}{2}} (u_1 + u_2)^2 dq} = \sqrt{\frac{2}{p} \int_{0}^{\frac{p}{2}} u_1^2 dq} + \frac{2}{p} \int_{0}^{\frac{p}{2}} 2u_1 u_2 dq + \frac{2}{p} \int_{0}^{\frac{p}{2}} u_2^2 dq}.$$
 (1)

Первое и третье слагаемые в уравнении (1) соответствуют квадрату действующих значений напряжений u_1 и u_2 . Для первого слагаемого получаем, что $(U_1)^2 = (0,5)^2$, третье с учетом рис. 1

$$\int_{0}^{\frac{p}{2}} u_{2}^{2} dq = \int_{0}^{q_{1}} (0,5)^{2} dq + \int_{q_{1}}^{q_{2}} (1,5)^{2} dq + \int_{q_{2}}^{q_{3}} (2,5)^{2} dq + \dots + \int_{q_{n-1}}^{\frac{p}{2}} (n-0,5)^{2} dq.$$
(2)

Тогда для второго слагаемого

$$\int_{0}^{\frac{p}{2}} 2u_{1}u_{2}dq = \int_{0}^{q_{1}} u_{1}dq + \int_{q_{1}}^{q_{2}} 3u_{1}dq + \int_{q_{2}}^{q_{3}} 5u_{1}dq + \dots + \int_{q_{n-1}}^{\frac{p}{2}} (2n-1)u_{1}dq.$$
(3)

Слагаемые в уравнении (3) определяют среднее значение u_1 на соответствующем интервале, которое при синусоидальной ШИМ может быть определено через напряжение задания $u_{3AAA} = Asin\theta$, с учетом чего выражение (3) преобразуем к виду

$$\int_{0}^{\frac{p}{2}} 2u_{1}u_{2}dq = \int_{0}^{q_{1}} (A\sin q - 0.5)dq + \int_{q_{1}}^{q_{2}} 3(A\sin q - 1.5)dq + \dots + \int_{q_{n-1}}^{\frac{p}{2}} (2n-1)(A\sin q - n + 0.5)dq.$$
(4)

После преобразования запишем

$$U = \sqrt{\frac{2}{p}} \left[A(1 + 2\sum_{i=1}^{n-1} \cos q_i) + 2\sum_{i=1}^{n-1} iq_i - (n - 0, 5)^2 \frac{p}{2} \right] + 0.25.$$
(5)
Коэффициент гармоник (THD) $K_{\Gamma H} = \frac{\sqrt{U^2 - U_{(1)}^2}}{U_{(1)}} = \frac{\sqrt{U^2 - (\frac{A}{\sqrt{2}})^2}}{\frac{A}{\sqrt{2}}}.$

Выражение (5) получено для u_{ϕ} МПЧ. Вместе с тем в трехфазной системе без нулевого провода в u_{ϕ} нагрузки отсутствует ряд модуляционных гармоник и реальный THD u_{ϕ} нагрузки меньше, чем u_{ϕ} МПЧ. В выражении (5) действующее значение напряжения высших гармоник определено слагаемым за скобками. Это позволяет внести соответствующую корректировку:

$$U = \sqrt{\frac{2}{p} \left[A(1+2\sum_{i=1}^{n-1} \cos q_i) + 2\sum_{i=1}^{n-1} iq_i - (n-0,5)^2 \frac{p}{2} \right] + V0,25},$$
(6)

где $\varsigma = 0.85$ при многоуровневой ШИМ со сдвигом модулирующих напряжений по уровню и $\varsigma = 0.8$ при многоуровневой ШИМ со сдвигом модулирующих напряжений по фазе [1].

Данные зависимости $K_{\Gamma H}(A)$ (THD) приведены в табл. 2. Для сопоставления в этой же таблице приведены и значения THD_M, полученные по результатам моделирования.

JI	ачени	ля коэ	ффиц	иентс	втар	монив	х напр	яжени	ія при			
A	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7
THD, %	35,9	23,2	21,3	15,7	15,1	11,9	11,7	9,61	9,54	8,05	8,05	6,9
THD _M ,%	37,5	21,5	22,1	15,1	15,4	11,7	11,7	9,52	9,5	8,05	8,07	6,8
A	7,5	8	8,5	9	9,5	10	10,5	11	11,5	12	12,5	13
THD, %	6,96	6,08	6,13	5,4	5,48	4,89	4,95	4,45	4,52	4,09	4,15	3,78
THD _M ,%	7	6	6,2	5,3	5,6	4,8	5	4,4	4,5	4,05	4,18	3,73

Значения коэффициентов гармоник напряжения при МШИМ

Таким образом, значение THD ≤ 8 % достигается только при A > 6.

Как метод, исключающий ШИМ, рассмотрим квантование по уровню. При этом переход на очередной уровень осуществ-

ляется по достижению $u_{3AД}$ определенного значения. Возможно несколько вариантов [1].

Квантование по среднему уровню (рис. 2). Действующее значение гармоник напряжения с кратностью k

$$U_{(k)} = \frac{4}{\sqrt{2}pk} \sum_{i=1}^{n} \cos(kq_i) \quad \text{ИЛИ}$$
$$U_{(k)} = \frac{4}{\sqrt{2}pk} \sum_{i=1}^{n} \cos\left[\sin^{-1}(\frac{i-0.5}{A})\right], \quad (7)$$

где θ_i – угол, соответствующий переходу на *i*-й уровень, *i* = 1, 2, ... *n* – номер уровня (*n* \leq *A*).

Исходим из того, что гармонический состав u_{ϕ} МПЧ и фазы нагрузки отличается наличием гармоник, кратных 3.

Действующее значение иф МПЧ

$$U = \sqrt{\frac{4}{2p}} \int_{0}^{\frac{p}{2}} u^{2} dq = \sqrt{\frac{4}{2p}} \left[\int_{q_{i}}^{q_{i+1}} i^{2} dq + \dots + \int_{q_{n}}^{\frac{p}{2}} n^{2} dq \right] = \sqrt{\frac{4}{2p}} \left[\sum_{i=1}^{n-1} i^{2} (q_{i+1} - q_{i}) + n^{2} (\frac{p}{2} - q_{n}) \right]$$

ИЛИ $U = \sqrt{\frac{4}{2p}} \left[\sum_{i=1}^{n-1} i^{2} (\sin^{-1} \frac{i + 0.5}{A} - \sin^{-1} \frac{i - 0.5}{A}) + n^{2} (\frac{p}{2} - q_{n}) \right].$

Действующее значение u_{Φ} нагрузки $U_{\rm H} = \sqrt{U^2 - U_{(3)}^2 - U_{(9)}^2 - U_{(15)}^2}$. Коэффициент гармоник (THD) $K_{\Gamma \rm H} = \frac{\sqrt{U_{\rm H}^2 - U_{(1)}^2}}{U_{\rm H}}$.

Относительная погрешность квантования $\Delta = \frac{\left|U_{m(1)} - A\right|}{A}$ 100%.

Зависимость $K_{\Gamma H}(A)$ при $k \le 103$ и относительных амплитуд гармоник низкого порядка (по отношению к первой гармонике) приведены в табл. 3.

A	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	7	8	9
THD,%	30,6	17,8	15,6	10,8	9,6	8,1	7,2	6,7	6,5	5.8	5,1	3,7	3,8	3,4
$U_{5}, \%$	20	2,72	1,87	5,2	0,13	4	0,44	3	0,46	2,37	0,43	0,38	0,33	0,29
$U_{7}, \%$	14,3	11	6,5	0,37	2,0	1,6	0,62	1,8	0,13	1,7	0,06	0,13	0,16	0,17
⊿, %	10,3	20	3,75	9,4	2,06	5,7	1,35	3,9	0,97	2,9	0,74	0,59	0,48	0,4

Гармонический состав напряжения при квантовании по среднему уровню

среднему уровню

Усреднение с усреднением по площади. Переключение на очередной *i*-й уровень (i = 1, 2, ...n) осуществляется из условия равенства площадей участка синусоиды, соответствующей данному уровню, и прямоугольника, ограниченно-го углом γ_i (рис. 3). Относительная амплитуда гармоник выходного напряжения

усреднением по площади

$$U_{m(k)} = \frac{4}{pk} \sum_{i=1}^{n} \cos(kg_i),$$

где $g_i = A(\cos q_i - \cos q_{i-1}) + iq_i - (i-1)q_{i-1}$, для последнего уровня

$$g_n = n \frac{p}{2} - (n-1)q_{n-1} - A\cos q_{n-1}$$
.

Коэффициент гармоник

оник
$$K_{\Gamma H} = \frac{\sqrt{\sum_{5} U_{m(k)}}}{U_{(1)}}.$$

n

Данные расчета приведены в табл. 4 при

 $k \leq 103$.

Таблица 4

Гарм	ониче	ский	состае	в напр	яжен	ия пр	и кван	нтован	нии с у	средн	ением	I ПО ПЛ	ющаді	И
A	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	7	8	9
THD,%	29,9	27,4	15.1	12,9	9,2	9,5	7,8	8,14	6,9	6	4,9	3,9	4,0	3,3
$U_{5}, \%$	22,8	13,4	0,12	4,1	1,3	2,05	1,1	1,26	0,86	0,86	0,67	0,53	0,43	0,4
$U_{7}, \%$	11,2	20	7,0	7,2	1,2	3,2	0,13	1,83	0,44	1,2	0,48	0,45	0,4	0,4
⊿, %	7,1	3	1,9	1,1	0,8	0,6	0,48	0,37	0,31	0,25	0,22	0,16	0,12	0,1

Более простое в реализации усреднение по уровню обеспечивает незначительное ухудшение ТНD, однако характеризуется большой погрешностью квантования, особенно при малых *A* и *A*, соответствующих половине уровня квантования. Общий недостаток – большое значение гармоник низкого порядка.

Как метод улучшения гармонического состава выходного напряжения при квантовании по уровню рассмотрим модуляцию задания гармониками, кратными трем. Для достоверной оценки лучше использовать удельный коэффициент гармоник с учетом порядка гармоник

THD_{УД} =
$$\frac{\sqrt{\sum_{k=2}^{\infty} (\frac{U_{(k)}}{k})^2}}{U_{(1)}}$$
.

Для исследований была разработана математическая модель фазы МПЧ, которая выполнена с учетом следующих допущений. Ограничимся A = 6 при предельном количестве уровней N = 13. Уровень квантования $u_{KBi} = i - 0,5$. Одному уровню может соответствовать несколько значений углов θ_{ij} (*i* – номер уровня, при использовании модуляции 9-й гармоникой, $j \le 5$ – номер угла на

интервале 0, $\pi/2$), где формируется переход на следующий (предыдущий) уровень. При наличии на интервале (0, $\pi/2$) участков $u_{3AA} < 0$ проверяется условие $|u_{3AA}| \ge u_{KBi}$, и соответствующие значения углов обозначим как $\theta = \alpha_{ij}$. При известных A, A_3 , A_9 значения углов, соответствующих *i*-му уровню, можно найти решением уравнения

$$i - 0.5 = |A\sin q + A_3\sin 3q + A_9\sin 9q|.$$
(8)

Решение уравнения (8) находим поочередной подстановкой в него значений θ из интервала (0, $\pi/2$) с минимальным шагом. При этом для каждого значения θ_i определяется, какому участку u_{3AA} соответствует решение (возрастание θ_{ij} , j=1, 3, 5, и убывание θ_{ij} , j=2, 4). При $u_{3AA} < 0$ решениям соответствует $\theta = \alpha_{ij}$ (возрастание α_{ij} , j=2, 4, и убывание α_{ij} , j=1, 3). Накладываем ограничение, что при изменении полярности u_{3AA} по отношению к напряжению основной гармоники амплитуда не превышает второго уровня (-2 < $u_{3AA} < 6$). В соответствии со значениями θ_{ij} и α_{ij} можно определить относительную амплитуду гармоники напряжения фазы МПЧ с кратностью $k = 6n \pm 1$:

$$U_{m(k)} = \frac{4}{p} \left[\sum_{i=1}^{6} \left(\sum_{g=0}^{2} \cos q_{i(2g+1)} - \sum_{g=1}^{2} \cos q_{i(2g)} \right) - \sum_{i=1}^{2} \left(\sum_{g=0}^{1} \cos a_{i(2g+1)} - \sum_{g=1}^{2} \cos a_{i(2g)} \right) \right].$$
(9)

Методика расчета состоит в том, что для каждого значения A перебираются возможные комбинации A_3 и A_9 и определяются значения THD, THD_{уд}. При этом выбираются решения, соответствующие минимальному значению THD_{уд} (при $k \le 103$). Для того, чтобы ограничить количество решений, рассматривались два варианта. Первый при $A_9 = 0$ и $A_3 = 0,15 A$ (из условия получения максимального значения выходного напряжения). Второй вариант при $A_3 = 0,15 A$ и изменении A_9 с шагом 0,1.

В табл. 5 приведены значения THD_M (при $k \le \infty$), полученные по результатам моделирования. Итак, при использовании модуляции гармонический состав улучшается во всем диапазоне (*THD*_{УД}). Уменьшается и погрешность квантова-

ния (
$$\Delta = \frac{A - U_{m(1)}}{A} < 3\%$$
).

Α	7	6,6	6	5,6	5	4,6	4	3,6	3	2,6	2	1,6	1,0	0,8
A_9	0	0,6	0,8	1,1	1,5	1,8	2,2	2	1,8	1,4	1,4	1,2	1,8	1,4
THD _{УД} ,%	0,12	0,14	0,21	0,2	0,2	0,12	0,2	0,12	0,35	0,26	0,32	0,58	0,62	0,76
THD,%	3,35	3,89	5,18	5,7	6,2	6,01	7,9	7,72	9,74	12,2	15,2	21,6	31,4	39,4
<i>∆A</i> , %	0,15	0,9	0,82	1,1	1,3	0,28	0,7	0,38	1,36	0,12	0,23	2,39	0,36	2,82
$THD_M,\%$	3,58	4,2	5,51	6,2	6,8	6,97	9	8,83	10,9	13,2	16,6	23,2	34,5	43,2

Коэффициенты гармоник выходного напряжения при модуляции гармониками, кратными трем

Следует также отметить, что квантование с модуляцией задания гармониками, кратными 3, обеспечивает такой же эффект по значениям THD_{YZ} , что и использование МШИМ при $f_{mod} = 3$ кГц при уменьшении *THD* (табл. 6).

Таблица 6

			11	1				7.1	1				
A	7	6,6	6	5,6	5	4,6	4	3,6	3	2,6	2	1,6	1
THD,%	3,58	4,2	5,51	6,2	6,77	6,97	9	8,83	10,9	13,2	16,6	23,2	40
THD _{УД} ,%	0,12	0,14	0,21	0,21	0,22	0,12	0,21	0,12	0,35	0,26	0,32	0,58	0,44
MII	ІИМ с	с часто	отой м	юдуля	ации f	$r_{Mod} = 3$	кГц (резули	ьтаты	модел	ирова	ния)	
THD,%	6,83	8,09	8,05	9,6	9,61	11,8	11,8	15,4	15	21,6	21,5	35,7	34,5
THD _{УД} ,%	0,11	0,13	0,12	0,15	0,14	0,18	0,16	0,23	0,2	0,32	0,27	0,53	0,62

Коэффициенты гармоник выходного напряжения

Во входной цепи МПЧ (при отсутствии режимов рекуперации энергии) используются многофазные схемы выпрямления. Базовый их элемент - трехфазный мостовой выпрямитель (ТМВ) на диодах с емкостным фильтром, который питается от изолированного комплекта вторичных обмоток входного трансформатора. Для расчета гармонического состава тока ТМВ в работе [1] предложено использовать базисные функции. Так, для тока $i_{\phi} = \frac{E_m}{wL_{\phi}} f(u_d) = \frac{E_m}{X_{\phi}} i_{\phi}^*$ $(E_m$ – амплитуда ЭДС фазы источника, X_{ϕ} – индуктивное сопротивление фазы входной цепи ТМВ; $u_d = \frac{nU_d}{\sqrt{3}E_m}$ – относительное значение выпрямленного напряжения; *n* – коэффициент трансформации). Аналогично для тока на выходе выпрямителя I_d, действующие значения входного тока и его k гармоник соответственно: $I_{\phi} = \frac{E_m}{X_{\phi}} I_{\phi}^*$, $I_{\phi(k)} = \frac{E_m}{X_{\phi}} I_{\phi(k)}^*$. Базисные функции I_{d}^* , I_{ϕ}^* , $I_{\phi(1)}^*$, $I_{(k)}^*$, полученные по результатам расчетов, задаются графически или после аппроксимации аналитически (табл. 7). При анализе гармонического состава и THD $I_{(k)}^{1} = \frac{I_{(k)}}{I_{(k)}^{*}}.$ удобнее использовать относительное значение гармоники Аппроксимация зависимостей в функции *u*_d выполнена полиномом $f = p_3 u_d^3 + p_2 u_d^2 + p_1 u_d^1 + p_0 u_d$ (коэффициенты полинома приведены в табл. 7).

Таблица 7

		u_d		()	0,845	-0,95	5)				(0	,95-	-0,99)				
		p_i	p_2		p_1		p_0		p_3		p_2		p_1		p_0		
		I^*_d	2,74	408	-6,6	776	3,87	88	2,001	8	-2,05		-1,89	994	1,9	477	
	j	I^*_{Φ}	1,8	177	-4,6169		2,75	7541 12)4	-32,897		28,8	66	-8,2	2722	
	$I^{:}$	$*_{\Phi(1)}$	1,9'	795	5 -4,9004 2,		2,87	62	-7,68	98	25,49	97	-27,9	939	10,	131	
<i>u</i> _d	ł			(0,845	-0,9	2)					((0,92-	0,95)		
p_i		<i>p</i> ₃		p_2		p_I		p_0		<i>p</i> ₃		p_2		p_I		p_0	
I^{l}	5)	214,	,06	-55	6,96	484	4,41	-1-	40,64	18	076	-50	0265	465	596	-143	99
$I^{l}_{(7)}$	7)	84,4	74	4 -223,9 197,83		-5	8,195	195 22		2124 -615		57131		-176	69		

Коэффициенты полинома

$I^{l}_{(11)}$	21,748	-49,432	36,87	-8,9584	-489,64	1369,1	-1275	395,49
$I^{l}_{(13)}$	-65,548	174,14	-153,88	45,247	6813,2	-19002	17666	-5474,2

u_d		(0,95-	-0,99)	
p_i	p_3	p_2	p_1	p_0
$I^{l}_{(5)}$	144,3	-402,99	381,74	-122,05
$I'_{(7)}$	716,13	-1994,2	1858,6	-579,52
$I^{l}_{(11)}$	2311,9	-6368,8	5842,4	-1784,5
$I'_{(13)}$	10095	-28898	27576	-8771

u_d		(0,8	45-0,92)				(0,92-	-0,95)	
p_i	p_3	p_2	p_1	p_0		p_3	p_2	p_1	p_0
$I'_{(17)}$	7) 4,3183	-11,11	1 9,5723	-2,756)	1225,1	-3432,9	3206,8	-998,53
$I^{l}_{(19)}$	-25,56	7 68,281	-60,69	8 17,967	7	-1192,2	3349	-3135,6	978,31
$I'_{(23)}$	₃₎ 61,054	-159,5	1 138,92	-40,32	22	2600,6	-7273,5	6781	-2107,2
$I^{l}_{(25)}$	5) 96,509	-255,0	1 224,62	24,62 -65,93		-868,9	2434	-2271,8	706,57
					1				
u_d		(0,95	-0,98)				(0,98-	-0,99)	
p_i	p_3	p_2	p_1	p_0	p	9 ₃	p_2	p_1	p_0
$I^{l}_{(17)}$	-979,06	2790,9	-2649,4	837,54	0	,0001797	5 -356,1	8 704,97	-348,75
$I'_{(19)}$	-5447,3	15802	-15278	4922,7		0,0000662	2 131,22	-255,2	1 124,15
$I^{l}_{(23)}$	6184,9	-17849	17170	-5505,5			1874,6	-3679,	8 1805,9
$I^{l}_{(25)}$	1888.5	-5452.7	5248.4	-1684.1			1574.7	-3081	5 1507.7

В случае 12-фазной составной схемы выпрямления два ТМВ питаются от двух комплектов вторичных обмоток трансформатора, соединенных по схемам «Y» и «Δ». В соответствии с работой [1] входной ток фазы

$$i_{A} = \left[\sum_{l=0}^{\infty} I_{ml(k)} \cos(kWt + y_{k}) + \sum_{l=0}^{\infty} I_{m2(k)} \cos k(Wt - p/6)\right]/n,$$

где индексы 1, 2 относятся к токам первого и второго выпрямителей.

При переходе к базисным значениям

$$i_{1A} = \sqrt{2} \frac{E_m}{nX} \left[\sum_{l=0}^{\infty} (I_{1(k)}^* + (-1)^l I_{2(k)}^*) \cos(kwt + y_k) \right].$$
(10)

В случае 18-фазной схемы три ТМВ питаются от трех комплектов вторичных обмоток трансформатора, которые обеспечивают взаимный сдвиг напряжений на угол 20° [1]. Ток фазы первичной обмотки трансформатора [1]

$$i_{A} = \frac{1}{n} \left[\sum_{l=0}^{\infty} I_{m1(k)} \cos kwt + \sum_{l=0}^{\infty} I_{m2(k)} (0,742\cos k(wt + 20^{\circ}) - 0,395\cos k(wt + 10^{\circ}) + 140^{\circ})) + \sum_{l=0}^{\infty} I_{m3(k)} (0,395\cos k(wt + 40^{\circ}) - 0,742\cos k(wt + 160^{\circ}))) \right].$$
(11)

Для l = 0 и l = 3n (n = 1, 2, ...), что соответствует $k = 18l \pm 1$ вторая, третья, четвертая и пятая составляющие уравнения (11) при сложении попарно дают значения *coswt*, т.е. гармоники складываются: $I_{m(1)} = I_{m1(1)} + I_{m3(1)} + I_{m3(1)}$. Для l = 1 и значений l, не кратных трем ($k \neq 18l \pm 1$), гармоники в уравнении (11) образуют симметричную трехфазную систему. Загрузка ТМВ может быть различной, амплитуду результирующего вектора найдем по проекциям векторов I_{m2} и I_{m3} на оси действительных и мнимых чисел, т.е.

$$I_{m}^{1} = I_{m1} - \sin \frac{p}{6} (I_{m2} + I_{m3}), \qquad I_{m}^{11} = \cos \frac{p}{6} (I_{m2} - I_{m3});$$
$$A_{k} = \sqrt{(I_{m1(k)}^{*} - 0.5(I_{m2(k)}^{*} + I_{m3(k)}^{*}))^{2} + 0.75(I_{m2(k)}^{*} - I_{m3(k)}^{*})^{2}}.$$

Фаза результирующего вектора соответственно $j = arctg(\frac{I_m^{11}}{I_m^1})$. При нечетных и четных *l* вектора токов второго и третьего выпрямителей меняются местами и $j = arctg(-\frac{I_m^{11}}{I_m^1})$. С учетом этого $j_k = arctg((-1)^{l+1}\frac{I_m^{11}}{I_m^1})$.

При использовании базисных значений токов

$$i_{1A} = \frac{\sqrt{2}E_m}{nX} \left[\sum_{k=18/\pm 1}^{\infty} (I_{m_{1(k)}}^* + I_{m^{2(k)}}^* + I_{m^{3(k)}}^*) \cos kwt + \sum_{k\neq 18/\pm 1}^{\infty} A_k \cos(kwt + j_k) \right].$$
(12)

Подавление высших гармоник возможно при l = 1 и четных значениях l. Аналогичные выражения для 12- и 18-фазных схем приведены в работе [2] для абсолютных значений токов.

Двадцатичетырехфазная схема выпрямления включает в себя четыре ТМВ, которые питаются от четырех комплектов обмоток со сдвигом напряжений на угол в 15°. Ее можно рассматривать как две 12-фазные схемы со сдвигом на угол в 15°. Первый и четвертый комплекты обмоток имеют схемы соединения «Y» и « Δ » с количеством витков w_1 и $w_2 = \sqrt{3}w_1$. При количестве витков первичной обмотки w коэффициент трансформации $n = w/w_1$). Два других комплекта имеют составные схемы. При этом эквивалентный ток фазы трансформатора

$$I_{A} = \frac{1}{n} \begin{bmatrix} I_{m1(k)} \cos kwt + I_{m4(k)} \cos[k(wt + \frac{p}{6}) + y_{k}] + \\ + I_{m2(k)} [0,816 \cos k(wt + 15^{\circ}) - 0,299 \cos k(wt + 135^{\circ})] + \\ + I_{m3(k)} [0,299 \cos k(wt + 45^{\circ}) - 0,816 \cos k(wt + 165^{\circ})] \end{bmatrix} .$$

$$(13)$$

Выражение (13) можно свести к следующему виду:

$$i_{1A} = \frac{\sqrt{2}E_m}{nX} \left[\sum_{l=0}^{\infty} (I_{m^{1(k)}}^* + (-1)^l I_{m^{4(k)}}^*) \cos kwt + \sum_{l=0}^{\infty} (I_{m^{2(k)}}^* + (-1)^l I_{m^{3(k)}}^*) \cos(kwt + \frac{p}{2}l) \right].$$

Таким образом, 24-фазная схема выпрямления обеспечивает полное подавление высших гармоник тока, потребляемого из сети переменного тока при симметрии нагрузки всех четырех выпрямителей для всех *l* за исключением значений, кратных четырем.

Двенадцатифазная схема выпрямления. При идентичной загрузке ТМВ

$$THD_{i} = \frac{\sqrt{\sum_{k=2}^{\infty} I_{(k)}^{2}}}{I_{(1)}} = \frac{\sqrt{\sum_{k=2}^{\infty} (0.5I_{(1)}I_{(k)1}^{1} + 0.5I_{(1)}I_{(k)2}^{1})^{2}}}{I_{(1)}} = \sqrt{\sum_{k=2}^{\infty} (I_{(k)}^{1})^{2}},$$

где $I_{(k)}^1 = \frac{I_{(k)}}{I_{(1)}}$ – относительное значение гармоники входного тока TMB.

Значения коэффициента $K_{\Gamma T} = THD_i = f(u_d)$ при учете 40 гармоник приведены в табл. 8.

Таблица 8

				3	ависи	мость	THD_i	$= f(u_d)$)			
u_d	0,85	0,86	0,87	0,88	0,89	0,9	0,91	0,92	0,93	0,94	0,95	0,96
$K_{\Gamma T}$,%	2,84	2,98	3,2	3,68	4,27	5,04	5,83	6,78	7,73	9,03	12,64	15,6

Приемлемое в соответствии с табл. 1 значение $K_{\Gamma T} < 6,8\%$ обеспечивается только при $u_d < 0,92$, что достигается при определенной загрузке и соответствующих параметрах схемы, в первую очередь, это касается индуктивности входной цепи. Рекомендуемое значение $I^{l}_{(11)}$ и $I^{l}_{(13)}$ до 2% не выполняется.

Восемнадцатифазная схема выпрямления. Зависимость коэффициента гармоник входного тока от *u*_d при учете 40 гармоник приведена в табл. 9.

Таблица 9

			- 3a	висим	юсть .	IHD_i =	$= f(u_d)$				
u_d	0,85	0,86	0,87	0,88	0,89	0,9	0,91	0,92	0,93	0,94	0,95
К _{ГТ} ,%	1,43	1,6	1,69	1,72	1,73	1,87	2,2	2,7	3,42	4,29	5,66

Рекомендуемое значение $I_{(17)}^{l}$ и $I_{(19)}^{l}$ до 1,5% выполняется при $u_{d} < 0,91$. *Двадцатичетырехфазная схема выпрямления*. Зависимость коэффициента гармоник входного тока от u_{d} при учете 40 гармоник приведена в табл. 10.

Зависимость $THD_i = f(u_d)$											
u_d	0,85	0,86	0,87	0,88	0,89	0,9	0,91	0,92	0,93	0,94	0,95
К _{ГТ} ,%	0,74	0,75	0,77	0,9	1,02	1,12	1,17	1,24	1,67	2,3	3,02

Рекомендуемое значение $I^{l}_{(23)}$ и $I^{l}_{(25)}$ до 0,6% выполняется при $u_{d} < 0,88$. Выводы

1. Модуляция задания гармониками, кратными трем, позволяет улучшить гармонический состав выходного напряжения МПЧ при использовании квантования по среднему уровню и исключении ШИМ, чем достигается уменьшение количества переключений ключей и потерь энергии в них. Этот метод представляется эффективным для несимметричных МПЧ, где достигается наилучшее соотношение показателей качества выходного напряжения (максимальное количество уровней) на ключ и используются ключи на разное напряжение.

2. Эффективное подавление высших гармоник тока, потребляемого из сети переменного тока, в многофазной схеме выпрямления достигается только при одинаковой загрузке выпрямителей. При этом удовлетворительные показатели качества во всем диапазоне изменения нагрузки обеспечивают только 18- и 24-фазные схемы. Использование 12-фазной схемы предполагает завышение индуктивного сопротивления входной цепи выпрямителя (трансформатора с повышенным u_k) из условия $u_d \leq 0,92$.

Список литературы

1. Шавьолкін О.О. Перетворювальна техніка: навч. посібник / О.О. Шавьолкін, О.М. Наливайко. – Краматорськ: ДДМА, 2008. – 326 с.

2. Song-Manguelle J. Multilevel Inverter for Power System Applications : Highlighting Asymmetric Design Effects From a Supply Network Point of View / J. Song-Manguelle, A. Rufer // CCECE 2003 - CCGEI 2003. - Montreal, May/mai 2003. - P. 435-440.