И.В. Новицкий, д-р. техн. наук, Ю.А. Шевченко (Украина, Днепропетровск, Национальный горный университет)

ИССЛЕДОВАНИЕ СПОСОБОВ ПЕРЕДАЧИ РЕЗОНАНСНОЙ ЭНЕРГИИ ВНУТРЕННИМ СЛОЯМ НАГРУЗКИ БАРАБАННЫХ МЕЛЬНИЦ ДЛЯ ИНТЕНСИФИКАЦИИ ПРОЦЕССА ИЗМЕЛЬЧЕНИЯ РУД

Введение. Постановка проблемы.

Одним из наиболее вероятных механизмов возбуждения колебаний нагрузочного момента привода мельницы являются колебания внутренних слоев нагрузки барабана, вызванное периодическим изменением радиуса вращения [1]. Предлагается, что свободное движение внутримельничной нагрузки описывается уравнением

$$\ddot{\theta} - f\dot{\theta}^2 + \omega_0^2 \sin(\theta - \operatorname{arctg}(f)) = 0, \qquad (1)$$

где θ — угол отклонения центра тяжести от вертикальной оси, *pad*; *f* - коэффициент трения; *g* - ускорение свободного падения; *R* - радиус барабана мельницы, *м*.

При этом частота колебаний системы может быть приближенно оценена выражением

$$\omega_0^2 = \frac{g}{R} \sqrt{1 + f^2} \,. \tag{2}$$

Как следует из уравнения (1), характер движения материала не зависит от его массы, а определяется радиусом барабана мельницы R и коэффициентом трения f.

Исследовав систему (1), в зависимости от коэффициента трения *f*, было получено следующее нелинейное дифференциальное уравнение [2]:

$$\ddot{\theta} - f\dot{\theta}^2 Sign(\Omega - \dot{\theta}) + \frac{g}{R} \cdot \sin(\theta) - \frac{fg}{R} \cdot \cos\theta \cdot Sign(\Omega - \dot{\theta}) = 0.$$
(3)

За счет наносности барабана, т.е. несовпадения его геометрической оси с осью вращения, параметр *R* (радиус вращения нагрузки) будет изменяться по закону:

$$R = R_0 + r \cdot \sin(\omega \cdot t), \tag{4}$$

где R_0 – средний радиус вращения, *м*; *r* – малый радиус, *м*; *ω* - частота изменения параметра *R*, кратная частоте вращения барабана, *рад/с*.

Из классической литературы [3] известно, что параметрический резонанс в системе (3) возможен, если отношения частот $2\omega_0 / \omega \approx n$, где n = 1, 2, 3...

При этом ширина областей резонанса будет интенсивно определяться значениями *n* и *r*.

Наглядно расположения областей параметрического резонанса демонстрируются диаграммами Айнса-Стретта для управления Матье, которые структурно близко к уравнению (1).

При наличии диссипации в системе (3) имеем:

$$\ddot{\theta} - f\dot{\theta}^2 Sign(\Omega - \dot{\theta}) + \rho\dot{\theta} + \frac{g}{R} \cdot \sin(\theta) - \frac{fg}{R} \cdot \cos\theta \cdot Sign(\Omega - \dot{\theta}) = 0$$
(5)

области возникновения резонанса сужаются и он возможен при малых значениях *n* и больших *r*.

Если диссипация нелинейная и ρ возрастает с увеличением θ , то в системе при параметрическом резонансе устанавливаются колебания с определенной амплитудой.

Целью настоящего исследований является усиления параметра резонанса в системе (3), т.е. расширения областей его возникновения или увеличения амплитуды установившихся колебаний при нелинейной диссипации за счет изменения параметра в формуле (4) по гармоническому закону:

$$\omega = \omega^0 + k \cdot \sin(\omega' t) \,. \tag{6}$$

При этом необходимо исследовать влияние дополнительного воздействия по скорости изменения радиуса (6) и определения оптимального значения параметров закона (6), т.е. k и ω' .

Основной материал и результаты исследования.

Выполнить анализ исследования системы (5) сложно, поскольку с учетом (4) и (6) получим систему, приведенную к виду:

$$\begin{vmatrix} \ddot{\theta} = F(\theta, \dot{\theta}) \\ F(\theta, \dot{\theta}) = f \dot{\theta}^2 Sign(\Omega - \dot{\theta}) - \rho \dot{\theta} - \frac{g}{R} \cdot \sin(\theta) + \frac{fg}{R} \cdot \cos \theta \cdot Sign(\Omega - \dot{\theta}) \\ R = R_0 + r \cdot \sin(\omega^0 t + k \cdot t \cdot \sin(\omega' t)) \end{vmatrix}$$
(7)

Параметры системы (7) являются: θ – угол отклонения центра тяжести от вертикальной оси, *pad*; *f* - коэффициент трения; *g* – ускорение свободного падения; *R*₀ - средний радиус вращения (определяет собственную частоту колебаний системы), *м*; *r* – амплитуда изменения радиуса вращения, *м*; ω^0 - средняя скорость изменения радиуса, *pad/c*; ω' - частота возбуждения по скорости изменения *R*, *pad/c*; *k* – амплитуда возбуждения по скорости изменения *R*; ρ – коэффициент демпфирования.

Для расчетов процессов системы (7) была составлена программа, которая

для определенных значений параметров системы (7) и начальных условий $\theta(0)$ и $\dot{\theta}(0)$ позволяет рассчитывать процессы $\theta(t)$ и $\dot{\theta}(t)$.

При выполнении расчетов константами были следующие данные: R = 1.5 m; f = 0.8; $\omega^0 = \omega' = 2.8 \text{ } pa\partial/c$; $\theta(0) = 0.5 \text{ } pa\partial$; $\dot{\theta}(0) = 0 \text{ } pa\partial$.

Для исследования явления параметрического резонанса в системе (7) были проведены несколько этапов расчета, по каждому из которых были сделаны определенные выводы.

Первый этап содержал вычисления частоты колебаний угла $\theta(t)$ для различных R_0 при значениях параметров $\rho = 0$; r = 0, 1 *м*; k = 0. При этом система уравнений (7) описывает консервативную систему (т.к. $\rho = 0$), в которой устанавливаются колебания угла θ с амплитудой, зависящей от начальных условий $\theta(0)$ и $\dot{\theta}(0)$. При значении радиуса $R_0 = 1,5$ *м*, которое соответствует частоте $\omega_0 = \sqrt{\frac{g}{R}\sqrt{1+f^2}} = 2,8$ *рад/с*, кратной ω^0 , параметр резонанса не наблюдается, что

у Rочевидно объясняется малым значением r. График полученной зависимости частоты колебаний $\omega(\theta)$ от R_0 представлен на рис. 1.

Как видно из графика частота колебаний моментально уменьшается с ростом радиуса вращения R_0 .

На втором этапе были выполнены расчеты при $\rho = 0$; $R_0 = 1,5$ *м* и изменяющимся *k*. Другими словами в систему было введено гармоническое возбуждение по скорости изменения радиуса *R*. На рис. 2 (а, б) представлены полученные графики зависимости амплитуды колебаний угла $\Delta \theta$ через 20 секунд после начала процесса от параметра *k* для 2-х значений параметра *r*: 0,1 и 0,2 *м*.

Амплитуда угла $\Delta \theta$ при $t \approx 20c$ принята в качестве критерия потому, что при отсутствии резонанса через 20 с. в системе возникают колебания с установившейся амплитудой $\Delta \theta$, а при наличии резонанса наблюдается монотонный рост амплитуды, которая неограниченно возрастает при $t \to \infty$.

Рис. 1. Зависимость частоты колебаний $\omega(\theta)$ от радиуса вращения R_0 для мельницы МРГ- 40×75

Рис. 2. Зависимость амплитуды колебаний угла $\Delta \theta$ от интенсивности воздействия по скорости k для мельницы МРГ- 40×75

Анализируя графики рисунка 2 можно сделать вывод о том, что существуют такие оптимальные значения k, при которых в системе возникает резонанс. Следовательно, введение дополнительного возбуждения по скорости изменения R расширяет область возникновения резонанса и является способом его усиления.

На третьем этапе расчеты выполнялись при введении в систему нелинейной диссипации, когда необратимые потери энергии возрастают пропорционально скорости изменения угла θ , т.е. $\rho = 0.01$. В этом случае в системе возникают установившиеся колебания с определенной амплитудой $\Delta \theta$.

На рис. З представлены зависимости амплитуды установившихся колебаний $\Delta\theta$ от параметра *r*. Кривая 1 получена для $R_0 = 1,5 \, \text{м}$ и k = 0, а кривая 2 для $R_0 = 1,5 \, \text{м}$ и k = 0,07.

Рис. 3. Зависимость амплитуды установившихся колебаний $\Delta \theta$ от малого параметра *r* для мельницы МРГ- 40×75

Кривые на рис. З подтверждают, что введение дополнительного возбуждения по скорости изменения радиуса вращения расширяет область возникновения резонанса и усиливает колебания в системе.

На рис. 4 представлены результаты исследований частоты установившихся колебаний в системе при введении возбуждения по скорости изменения радиуса (k = 0,07) в зависимости от среднего радиуса вращения R_0 . В отличие от графика (рис. 1) кривая на рис. 4 не является монотонно убывающей в облас-

ти параметрического резонанса ($R_0 \approx 1,5 \ M$) здесь наблюдается явление захвата частоты.

На рис. 5 представлен график переходного процесса для заданных значений параметров системы.

Рис. 5. Решение уравнения (7) численным методом для мельницы МРГ- 40×75

Выводы

Результаты выполненного исследования свидетельствуют о том, что введение в систему (7) дополнительно возбуждения по скорости изменения радиуса вращения, при определенных параметрах последних, расширяет границы области параметрического резонанса, а при наличии нелинейной диссипации приводит к увеличению амплитуды колебаний угла θ . Кроме этого существуют оптимальные значения частоты и амплитуды вводимых воздействий.

Список литературы

1. Марюта А.Н. Теория моделирования колебаний рабочих органов механизмов и ее положения. М.: Наука, 1991. – 172 с.

2. Новицкий И. В., Шевченко Ю. А. Моделирование процесса возникновения колебаний рудной нагрузки барабанных мельниц. //Сб. науч. тр. НГУ. – 2005. – № 22. – С. 108 -113.

3. Каударер Г. Нелинейная механика. – М.: Изд-во иностр. лит., 1961. – 386 с.

4. Сокур Н.И., Потураев В.Н., Бабец Е.К. Дробление и измельчение руд. – Кривой рог: Издво «ВЭЖА», 2000 – 290 с.

5. Новицкий И.В. Автоматическая оптимизация процессов самоизмельчения руд в барабанных мельниках. Д.: Системные технологии, 2000. – 195 с.

6. МладецькийІ.К., Пілов П.І. Технологічні розрахунки показників збагачення корисних копалин: Навч. посібник. – Д.: Національний гірничий університет, 2005 – 156 с.