Т.М. Халил, А.В. Горпинич, канд. техн. наук

(Украина, г. Мариуполь, Приазовский государственный технический университет)

ВЫБОР МЕСТ УСТАНОВКИ БАТАРЕЙ КОНДЕНСАТОРОВ ЗАДАННОЙ МОЩНОСТИ И РЕКОНФИГУРАЦИЯ В РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ С ПОМОЩЬЮ СЕЛЕКТИВНОГО МЕТОДА РОЯ ЧАСТИЦ

Существует несколько методов снижения потерь электроэнергии и улучшения качества напряжения в распределительных сетях (PC), из которых наиболее распространенными являются компенсация реактивной мощности (КРМ) с помощью батарей конденсаторов (БК) и реконфигурация (процесс изменения топологии PC) путем изменения состояния разомкнутых или замкнутых коммутационных аппаратов (КА). Применение указанных методов в реальных разветвленных сетях с большим количеством узлов приводит к проблеме сложной многоцелевой нелинейной оптимизации, поскольку при этом необходимо учитывать не только потери электроэнергии, но и изменение пропускной способности проводников и уровней напряжения в узлах нагрузки, нелинейную зависимость затрат на БК от их мощности, радиальную топологию PC и т.д.

Вопросам оптимизации мест установки БК заданной мощности и реконфигурации РС посвящено значительное количество публикаций [1–9]. Однако в подавляющем большинстве из них для снижения потерь электроэнергии используют каждый из двух методов в отдельности и лишь в некоторых работах предлагается совместное их применение [10–12]. Цель работы – показать эффективность совместной оптимизации конфигурации РС и мест установки БК заданной мощности, реализованной с помощью селективного метода роя частиц (МРЧ).

В последние годы было разработано много новых алгоритмов в области оптимизации режимов и структуры распределительных электрических сетей, большая часть которых базируется на эвристических методах и методах искусственного интеллекта: метод имитации отжига, искусственные нейронные сети, генетические алгоритмы, алгоритм поиска с запретами, муравьиные алгоритмы и др. В частности, наблюдается повышенный интерес к методам, основанным на использовании математического описания сложных природных механизмов. Сравнительно недавно для решения оптимизационных задач в РС стали применять МРЧ [13].

Этот метод был разработан Кеннеди и Эберхартом в 1995 г. [14]. Основан он на моделировании социального поведения и эффективен при решении проблем сложной многоцелевой нелинейной оптимизации. МРЧ – это стохастический оптимизационный алгоритм, моделирующий социальное поведение птиц в стае, косяков рыб или роя пчел, а также методы, с помощью которых птицы летают (рыбы плавают) синхронно и умеют менять направление движения с перегруппировкой в оптимальные формации, находят источники пищи, спасаются от хищников и т.д. В этом методе агентами являются "частицы", которые отражают возможные решения проблемы. Каждая частица перемещается в многомерном пространстве решений со скоростью, которая постоянно обновляется на основе собственного опыта и опыта соседей. Рассмотрим основные положения МРЧ.

1. Пусть пространство решений будет *d*-мерным и каждая частица *i* характеризуется *d*-мерным вектором $X_i = [x_{i1}, x_{i2}, ..., x_{id}]$.

2. Количество частиц в рое, который называется "популяцией", обозначим через n. Популяцию можно представить как $pop = [X_1, X_2, ..., X_n]$.

3. Пусть также $PB_i = [pb_{i1}, pb_{i2}, ..., pb_{id}]$ – наилучшая позиция каждой частицы (particle best), $GB = [gb_1, gb_2, ..., gb_d]$ – наилучшая глобальная позиция для всего роя (global best), $V_i = [v_{i1}, v_{i2}, ..., v_{id}]$ – скорость перемещения каждой частицы в *d*-мерном пространстве решений.

Тогда на итерации k скорость частицы обновляется с помощью выражения

$$\upsilon_{id}^{k+1} = w \upsilon_{id}^k + c_1 r_1 (\ p b_{id}^k - x_{id}^k \) + c_2 r_2 (\ g b_d^k - x_{id}^k \),$$

где i = 1, 2, ..., n, а n – размер популяции; w – коэффициент, характеризующий инерцию; c_1 и c_2 – постоянные, характеризующие ускорение; r_1 и r_2 – две случайные величины в интервале [0,1].

4. Позиция частицы обновляется с помощью выражения

$$x_{id}^{k+1} = x_{id}^k + \upsilon_{id}^{k+1}$$

В 1997 г. авторы работы [15] адаптировали МРЧ для поиска в бинарном пространстве решений, применив сигмоидальное преобразование к скорости частицы:

sigmoid(
$$v_{id}^{k+1}$$
) = $\frac{1}{1 + exp(-v_{id}^{k+1})}$

Выражение для обновления позиции частицы в этом случае преобразуется к виду

$$x_{id}^{k+1} = \begin{cases} 1, \text{если rand } < sigmoid(v_{id}^{k+1}) \\ 0 & \text{в другом случае} \end{cases}$$

В работе [16] рассмотрен селективный метод роя частиц (СМРЧ) для оптимизации мест размыкания контуров РС с целью снижения потерь электроэнергии за счет перераспределения ее потоков по линиям. В СМРЧ пространство решений для каждого *d*-мерного вектора $S_d = [s_{d1}, s_{d2}, ..., s_{dn}]$ представляет свой набор из *dn* позиций, где *dn* – количество выбранных позиций для *d*-мерного вектора. Целевая функция в этом случае – выбор решений *dn* позиций для каждого *d*-мерного вектора пространства решений *S_d*, причем позиция каждой частицы определяется набором выбранных переменных. Таким образом, сигмоидальная функция будет иметь такой вид:

sigmoid(
$$v_{id}^{k+1}$$
) = $dn \frac{1}{1 + exp(-v_{id}^{k+1})}$,

а координата *i* каждой позиции частицы для данного *d*-мерного вектора является выбранной переменной, обновлять которую можно с помощью выражения

где $s_{d1}, s_{d2}, s_{d3}, ..., s_{dn}$ – выбранные переменные в *d*-мерном векторе.

Значение скорости ограничивается некоторыми минимальными и максимальными величинами $[V_{min}, V_{max}]$ с помощью выражения

$$m{u}_{id}^{k+1} = egin{cases} V_{\max}, \ ecли \ m{u}_{id}^{k+1} \! > \! V_{\max}, \ m{u}_{id}^{k+1}, \ ecли \ m{u}_{id}^{k+1} ig| \leq V_{\max}, \ V_{\min}, \ ecли \ m{u}_{id}^{k+1} < V_{\min}. \end{cases}$$

Чтобы избежать постоянного значения скорости для каждой итерации и заставить частицу перемещаться в пространстве решений, необходимо использовать уравнение

$$\mathbf{u}_{id}^{k+1} = \begin{cases} rand imes \mathbf{u}_{id}^{k+1}, \text{ если } |\mathbf{u}_{id}^{k+1}| = |\mathbf{u}_{id}^{k}|, \\ \mathbf{u}_{id}^{k+1} - \mathbf{B}$$
другом случае.

Таким образом, пространство решений в бинарном МРЧ может состоять только из значений 0 или 1, в то время как в СМРЧ пространство решений представляет набор выбранных переменных.

Эффективность предлагаемого метода рассмотрена на примере снижения потерь электроэнергии и улучшения качества напряжения для двух тестовых схем. Результаты моделирования, полученные с помощью СМРЧ, сравним с результатами, полученными с помощью трех других методов: имитации отжига (ИО), генетических алгоритмов (ГА) и муравьиных алгоритмов (МА). Оптимизацию выполним для трех случаев:

1) только с учетом КРМ при помощи БК;

2) только с учетом реконфигурации сети;

3) с учетом совместной реконфигурации сети и КРМ при помощи БК.

В этих двух тестовых схемах все нормально разомкнутые коммутационные аппараты (НРКА) и нормально замкнутые коммутационные аппараты (НЗКА), которые принадлежат любому контуру, формируют пространство решений при использовании реконфигурации сети, в то время как все узлы нагрузки или шины (за исключением шин питающих подстанций) формируют пространство решений при использовании учитывались уровни напряжения в узлах сети, максимально допустимая пропускная способность проводников, уровень компенсации реактивной мощности (суммарная генерация реактивной мощности в сеть не должна превышать суммарной реактивной мощности нагрузок, а ее конфигурация должна иметь радиальную структуру.

Первая тестовая схема [7] изображена на рис. 1, содержит 16 узлов нагрузки (с учетом 3 секций шин питающей подстанции), 13 НЗКА и 3 НРКА – КА 15, 21 и 26. Суммарная нагрузка принята равной 100 МВА, типоразмеры БК – 300, 600, 900, 1200, 1500, 1800, 2100 и 2400 квар. Подробные данные о параметрах этой схемы приведены в работе [7]. Для этой схемы количество *d*-мерных векторов составляет 16 (13 узлов нагрузки, где возможна установка БК, и 3 НРКА). В табл. 1 приведены результаты моделирования этой схемы до и после оптимизации, а в табл. 2 для сравнения – результаты моделирования, полученные с помощью СМРЧ, ИО, ГА и МА.

Рис. 1. Тестовая схема

Таблица 1

Название		До оптими- зации	После оптими- зации с помо- щью БК	После оптимиза- ции с помощью реконфигурации	После оптимизации путем совместной ре- конфигурации и уста- новки БК	
e	4	0	0	0	0	
y3J	5	1100	1800	1100	2100	
ХB	6	1200	1500	1200	1800	
цность БК, устанавливаемы: нагрузки, квар	7	0	1200	0	900	
	8	0	1800	0	2400	
	9	1200	1800	1200	2400	
	10	0	1800	0	600	
	11	600	1200	600	0	
	12	3700	1800	3700	2400	
	13	0	1200	0	600	
	14	1800	600	1800	1200	
	15	0	900	0	900	
Мош	16	1800	900	1800	1200	

(Продолжение таблицы 1)

	ние До оптимизации	После	После	После оптимизации	
Наименование		оптимизации с помощью БК	оптимизации с помощью	путем совместной реконфигурации и	
		1	реконфигурации	установки бл	

НРКА	15, 21, 26	15, 21, 26	19, 7, 26	19, 7, 26
Суммарная мощность уста- навливаемых БК, квар	11400	16500	11400	15500
Минимальное напряжение, о.е.	0,969	0,97	0,972	0,973
Максимальное напряжение, о.е.	1	1	1	1
Суммарные потери активной мощности, кВт	511,4	486,6	466,1	446,3
Снижение потерь активной мощности, %		4,85	8,86	12,73

Таблица 2

Результаты моделирования первой тестовой схемы различными методами					
Метод моделирования		После оптимизации с помощью БК	После оптимизации с помощью реконфигурации	После оптимизации путем совместной реконфигурации и установки БК	
ИО	Суммарные потери активной мощности, кВт	489,7	466,1	448,3	
ИО	Снижение потерь активной мощности, %	4,24	8,86	12,34	
ГА	Суммарные потери активной мощности, кВт	488,2	466,1	448,2	
	Снижение потерь активной мощности, %	4,54	8,86	12,36	
МА	Суммарные потери активной мощности, кВт	487,1	466,1	448,1	
MA	Снижение потерь активной мощности, %	4,75	8,86	12,38	
СМРЧ	Суммарные потери активной мощности, кВт	486,6	466,1	446,3	
	Снижение потерь активной мощности, %	4,85	8,86	12,73	

В качестве второй тестовой схемы [12] использована реальная распределительная сеть (рис. 2) Тайваньской энергетической компании (Taiwan Power Company). Схема содержит 11 секций шин (A-K), 83 НЗКА и 13 НРКА – КА 84-96. В этом состоянии (до оптимизации) суммарные потери активной мощности составляют 531,99 кВт. Нагрузка – постоянная, симметричная, типоразмеры БК – кратны 50 квар. Подробные данные о параметрах этой схемы приведены в работе [12]. Для этой схемы количество *d*мерных векторов составляет 86 (73 узла нагрузки, где возможна установка БК, и 13 НРКА). В табл. 3 для сравнения рассмотрены результаты моделирования, полученные с помощью СМРЧ, ИО, ГА и МА.

Рис. 2. Распределительная сеть Тайваньской энергетической компании (Taiwan Power Company) Таблица 3.

Метод моделирования		После оптими- зации с помо- щью БК	После оптимиза- ции с помощью реконфигурации	После оптимизации пу- тем совместной рекон- фигурации и установки БК
	Суммарные потери активной мощности, кВт	342,14	469,88	309,12
ИО	Снижение потерь активной мощности, %	35,7	11,68	41,9
ГА	Суммарные потери активной мощности, кВт	330,79	469,88	295,39
	Снижение потерь активной мощности, %	37,8	11,68	44,48
МА	Суммарные потери активной мощности, кВт	330,41	469,88	295,12
MA	Снижение потерь активной мощности, %	37,9	11,68	44,5
СМРЧ	Суммарные потери активной мощности, кВт	330	469,88	295
	Снижение потерь активной мощности, %	38	11,68	44,55

n			, .			
Результяты	моледировя	ния втопоі	і тестовои	схемы	пязпичными	метолями
1 coyub tarbi	подетрова	mn bropor	I ICCIODOM	CACHIDI	pasein moniti	летодални

Из результатов моделирования, приведенных в табл. 1, следует, что во всех трех случаях (оптимизация с помощью БК, оптимизация с помощью реконфигурации и оптимизация путем совместной реконфигурации и установки БК) наблюдается снижение потерь электроэнергии при незначительном улучшении качества напряжения в узлах нагрузки. На основании полученных данных (табл. 2 – 3) можно сделать вывод, что использование всех четырех методов (ИО, ГА, МА и СМРЧ) для оптимизации конфигурации PC приводит к одинаковым результатам. Тем не мене, по сравнению с другими методами, применение СМРЧ для оптимизации с помощью БК или оптимизации путем совместной реконфигурации и установки БК приводит к несколько лучшим результатам. Совместная оптимизация конфигурации PC и мест установки и батарей конденсаторов заданной мощности наиболее эффективна, так как в этом случае наблюдается наибольшее снижение потерь активной мощности.

Проведенные исследования позволяют сделать следующие выводы.

1. С помощью СМРЧ реализована совместная оптимизация конфигурации РС и мест установки и батарей конденсаторов заданной мощности, эффективность которой рассмотрена на примере двух тестовых схем.

2. Сравнение полученных результатов с результатами применения других современных методов оптимизации PC подтверждает высокую точность и хорошую сходимость СМРЧ, который может рассматриваться как эффективная альтернатива этим методам, не требующая высокой алгоритмической сложности.

3. В настоящее время с помощью СМРЧ путем установки БК, изменения конфигурации сети и замены сечений проводников на перегруженных по экономическим условиям участках проводится оптимизация технико-экономических показателей действующей схемы электроснабжения Орджоникидзевского участка (г. Мариуполь), содержащей 273 узла нагрузки и около 350 ветвей.

Список литературы

1. Neagle, N. M. Loss reduction from capacitors installed on primary feeders [Text] / N. M. Neagle, D. R. Samson // AIEE Transactions on Power Apparatus and Systems. – 1956. – Vol. 75. – No. 3. – P. 950–959.

2. Baran, M. E. Optimal sizing of capacitors placed on a radial distribution system [Text] / M. E. Baran, F. F. Wu // IEEE Transactions on Power Delivery. – 1989. – Vol. 4. – No. 1. – P. 725 – 734.

3. Baghzouz , Y. Shunt capacitor sizing for radial distribution feeders with distorted substation voltages [Text] / Y. Baghzouz, S. Ertem // IEEE Transactions on Power Delivery. -1990. - Vol. 5. - No. 2. - P. 650 - 657.

4. Sundhararajan, S. Optimal selection of capacitors for radial distribution systems using a genetic algorithm [Text] / S. Sundhararajan, A. Pahwa // IEEE Transactions on Power Systems. – 1994. – Vol. 9. – No. 3. – P. 1499 – 1507.

5. Fuzzy approach for optimal placement and sizing of capacitor banks in the presence of harmonics [Text] / M. A. S. Masoum, A. Jafarian, M. Ladjevardi, E. F. Fuchs, W. M. Grady // IEEE Transactions on Power Delivery. – 2004. – Vol. 19. – No. 2. – P. 822 – 829.

6. Zhezhelenko, I. V. Optimal capacitor placement in distribution system considering mutual coupling, load unbalancing and harmonics [Text] / I. V. Zhezhelenko, A. V. Gorpinich, T. M. Khalil // Proc. 20th International Conference and Exhibition on Electricity Distribution. – 8-11 June 2009. – Session 5. – Paper no. 0441. – Prague (Czech Republic), 2009.

7. Distribution feeder reconfiguration for loss reduction [Text] / S. Civanlar, J. J. Grainger, H. Yin, S. S. H. Lee // IEEE Transactions on Power Delivery. – 1988. – Vol. 3. – No. 3. – P. 1217 – 1223.

8. Chang Hong-Chan. Network reconfiguration in distribution systems using simulated annealing [Text] / Hong-Chan Chang, Cheng-Chien Kuo // Electric Power Systems Research. – 1994. – Vol. 29. – No. 3. – P. 227 – 238.

9. Su Ching-Tzong. Distribution network reconfiguration for loss reduction by ant colony search algorithm / Ching-Tzong Su, Chung-Fu Chang, Ji-Pyng Chiou // Electric Power Systems Research. – 2005. – Vol. 75. – No. 2-3. – P. 190 – 199.

10. Jiang, D. Optimal electric distribution systems switch reconfiguration and capacitor control [Text] / D. Jiang, R. Baldick // IEEE Transactions on Power Systems. – 1996. – Vol. 11. – No. 2. – P. 890 – 897.

11. Su C. T. Feeder reconfiguration and capacitor setting for loss reduction of distribution systems / C. T. Su, C. S. Lee // Electric Power Systems Research. – 2001. – Vol. 58. – No. 2. – P. 97 – 102.

12. Chang Chung-Fu. Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm [Text] / Chung-Fu Chang // IEEE Transactions on Power Systems. – 2008. – Vol. 23. – No. 4. – P. 1747 – 1755.

13. Alrashidi, M. R. A survey of particle swarm optimization applications in power system operations [Text] / M. R. Alrashidi, M. E. El-Hawary // Electric Power Components and Systems. – 2006. – Vol. 34. – P. 1349 – 1357.

14. Kennedy, J. Particle swarm optimization [Text] / J. Kennedy, R. Eberhart // Proc. IEEE International Conference on Neural Networks. – 1995. – Vol. 4. – P. 1942 – 1948.

15. Kennedy, J. A discrete binary version of the particle swarm algorithm [Text] / J. Kennedy, R. Eberhart // Proc. IEEE International Conference on Systems, Man, and Cybernetics (SMC 97). – 1997. – Vol. 5. – P. 4104 – 4109.

16. Халіл, Т. М. Застосування селективного методу рою частинок для оптимізації конфігурації розподільних мереж [Текст] / Т. М. Халіл, О. В. Горпинич // Энергосбережение. Энерготика. Энергоаудит. – 2010. – № 11 (81). – С. 28 – 33.

Рекомендовано до друку: проф. Разумним Ю.Т.